
General
Symmetry is an application which replicates the birth date, breed, and 
Express Verified portions of the CCIA database by downloading new 
changes every night. Having this information on site makes it so you can 
always rely on a very quick response to such queries, even if your internet 
is slow or not working. Symmetry has two APIs which your application 
can use to communicate with it to retrieve age verification, breed, and 
Express Verified information. The preferred API, because it is the fastest 
and most useful in high volume situations, is the TCP API. The other 
API is the File API. Both APIs use the same request/response strategy. It 
is possible for Symmetry to use both APIs at the same time.

Each request sent to Symmetry must be exactly what is expected. No ex-
tra spaces, etc. are allowed or a parsing error will be returned. (The only 
exception to this is if the RFID tag has spaces in it.) The request method 
name comes first followed by a left parenthesis. If the request has param-
eters, they follow next, each separated by a comma. Then comes a right 
parenthesis. If no parameters are required, the parentheses must still be 
present. If there are parameters, the correct number of parameters for 
that request must be present.

Results will always follow exact formatting rules as well, making it easy to 
parse the results on your end. Spaces will not exist, except in the case of a 
message being returned (i.e. an error message). Boolean values will either 
be True or False. Dates will always be 8 digits in the format YYYYMMDD. 
Empty dates will be 00000000. An empty breed will be returned as an 
empty string. Results with multiple parts will be separated by commas.

Internally, the CCIA database sees RFID numbers as 21 digit numbers. 
Symmetry will attempt to convert the RFID number you send to it into 
a proper CCIA tag number. This includes converting country codes to 
their numeric equivalents. If you pass less than 15 digits, Symmetry will 
assume the country code to be for Canada (124).

If there is a parsing error, or anything else happens which results in an 
error, an error message is returned for the response. It will always start 
with “Error: ” (note the space following the colon) followed by a one 
line description of the error. Error descriptions are meant to be human 
readble—that is, they are meant to be displayed somewhere, not parsed. 
Thus, there is no definitive list of possible error descriptions.

Each request must be followed by exactly one end of line delimiter. Re-
sults follow this same rule. This is important in both APIs so the re-
ceiving application knows when the full request or response has been 
received. The end of line delimiter used should be the standard internet 
(or Windows) end of line regardless of the platform being run on. This is 
an ASCII 13 followed by an ASCII 10 (Hex 0D/0A).

The two APIs are described in more detail below, followed by details for 
the possible requests and responses the make up the API.

TCP API
By default, Symmetry will listen for TCP communications on port 
19850, but this can be changed in the Preferences. Symmetry can handle 
multiple connection at the same time, even from the same computer if 
necessary.

Generally there is no need to continually close and reopen a connec-
tion for each request. If you know that more requests will be sent in the 
next few moments, it is faster and more efficient to leave the connection 
open. There is, however, a time out period where Symmetry will close 
an open connection if no requests have been received during the time 
out period. By default, this is set to one hour, but it can be changed in 
the Preferences as well. Every time a request is received, the time out 
period starts over again for that connection. In either case, you should 
always close the connection once you know you are done with it to save 
resources.

Once you have established a connection with Symmetry, you send a prop-
erly formatted request followed by an end of line character (as explained 
above). The request will be processed and a result returned. More re-
quests can be sent in the same fashion.

It is possible to send a subsequent request before receiving a result. All 
results returned will be in the same order that the requests were re-
ceived. 

An example communication flow would be like this:

• Establish a new TCP connection on the correct port.
• Send a request to Symmetry.
• Receive a result.
• Send another request.
• Receive a result.
• Close the connection.

Note that the proper holes must be opened in any fire walls that may 
exist between the client computer and the computer hosting Symme-
try. You would normally want the computer hosting Symmetry to have a 
static IP address so you always know what address to connect on.

File API
When using this API, Symmetry will watch a specific folder (set in the 
Preferences) for new request files. Each time it scans the folder and finds 
new request files, it processes them by reading the request, creating a 
corresponding result file, and deleting the request file. The request file 
contents should only contain the request followed by the end of line 
delimiter (as explained earlier), exactly like the TCP API. The result file 
will be the same.

Symmetry API Reference

Version 1.0

���
������

���

�����������������������������������

������������������������������������� ��������������������� ������������������� �����������������



Symmetry API Reference 1.0 Page 2

By default, Symmetry scans the folder for new requests every ten sec-
onds. This can be changed in the Preferences. Once a scan cycle is com-
plete, Symmetry will wait for this much time before starting a new scan 
cycle. This means that if a scan cycle takes two seconds, and the wait 
time is ten seconds, there is actually twelve seconds between scans.

Only one request is allowed per file. Any extraneous data after the first 
end of line delimiter will be ignored. If the request results in an error, 
the error will be returned in the result file in the same way as the error is 
returned by the TCP API.

Symmetry recognizes a file to be a request file by its extension which 
must be “.request”. Similarly, your application can recognize result files 
by their extension which will be “.result”. When multiple request files 
end up in the watch folder at the same time, it is important to know 
which result file corresponds to which request file. This is done with the 
filename itself. When Symmetry processes a request file, the result file 
it creates will have exactly the same name as the request file had, except 
that the extension will be changed.

Therefore, it is up to your application to ensure that request files always 
have unique names (because you don’t know for sure when Symmetry will 
delete old request files) and that you keep track of the request filenames 
so that you can match up the results properly in your application. One 
suggestion would be to generate and use a UUID for each filename.

When Symmetry creates a result file, if a file already exists with the name 
it needs to use, Symmetry will attempt to overwrite the file. If it cannot, 
it will simply give up. However, if unique names are always used and the 
folder is kept clean, this will not happen.

Note that any files in the watch folder that don’t have the “.request” 
extension will be ignored when Symmetry is processing the folder. How-
ever, it still takes CPU time for Symmetry to filter them out. Therefore, 
it is best to choose a watch folder that is free of other types of files.

As noted above, Symmetry will delete request files after they have been 
processed. It is your responsibility to delete the result files after you have 
received the result. This is important so that the watch folder stays clean 
and doesn’t become to full (which can slow the system down).

It is possible for you to create the request file and only have the request 
partially written to the file when Symmetry first notices the file. Sym-
metry will not process the file until the end of line delimiter exists. You 
should apply the same logic when reading the result files.

An example communication flow would be like this:

• Create a file (or multiple files) with a request inside each file. Make 
sure they have the “.request” extension.

• Symmetry notices the files on the next cycle and processes them. 
The request files are deleted and result files with the same names 
are created.

• Your application watches for the result files and reads in the results. 
You match up the result to the request based on the filename with-
out extension.

• The cycle continues.

Requests
This section details each possible request. Its function and parameters 
are explained, and then an example is given. In the examples, the request 
is given first in red and the result follows in blue. Note that “<CRLF>” is 
used to denote the proper end of line delimiter.

IsConnectionOK

This request can be used to test that an API is working. It works for 
either API.

This request has no parameters. You know there is a problem working 
with the API if an error result is returned or if no result at all is returned. 
If the connection is working, the result will be “OK”.

IsConnectionOK()<CRLF>

OK<CRLF>

GetConvertedRFID

Symmetry does a variety of things to massage incoming RFID numbers 
into the 21 digit CCIA equivalent. This request allows you to test and/or 
use the converted numbers. It simply returns the massaged RFID num-
ber for the RFID number sent in the request. Just because it returns 
a number does not mean that the RFID number actually exists in the 
database.

GetConvertedRFID(LA CAN 000256233350)<CRLF>

000000000124256233350<CRLF>

DoesExist

This request takes one RFID and returns True if the RFID exists in Sym-
metry or False if it does not exist. Note that Symmetry only downloads 
RFID numbers from the CCIA if they have a birth date or a breed. Tags 
that are known to the CCIA, but do not have a birth date or breed will 
return False here because Symmetry will not know about them.

DoesExist(124000123456789)<CRLF>

True<CRLF>

IsAgeVerified

This request takes one RFID and returns True if the animal has a birth 
date. It returns False if it does not have a birth date or if it does not 
exist.

IsAgeVerified(124000123456789)<CRLF>

False<CRLF>

GetBirthDate

This request takes one RFID and returns the date of birth for the animal 
in YYYYMMDD format. If the animal does not exist or has no birth date, 
00000000 will be returned.

GetBirthDate(124000123456789)<CRLF>

20070308<CRLF>

GetAge

This request takes one RFID and returns the age, in months, of the ani-
mal. If the animal does not exist or has no birth date, 0 will be returned.

GetAge(124000123456789)<CRLF>

27<CRLF>

GetAllAgeInfo

This request takes one RFID and returns the date of birth followed by 
the age followed by the date the previous information was registered 
with the CCIA database.



Symmetry API Reference 1.0 Page 3

GetAllAgeInfo(124000123456789)<CRLF>

20070308,27,20070312<CRLF>

GetBreed

This request takes one RFID and returns the breed of the animal. If a 
breed was never attached to the animal or the animal does not exist the 
breed returned will be blank.

GetBreed(124000123456789)<CRLF>

AN<CRLF>

or

GetBreed(124000123456789)<CRLF>

<CRLF>

GetAllBreedInfo

This request takes one RFID and returns the breed of the animal fol-
lowed by the date the breed information was registered with the CCIA 
database.

GetAllBreedInfo(124000123456789)<CRLF>

AN,20070312<CRLF>

IsExpressVerified

This request takes one RFID and returns True if the animal has been 
Express Verified. It returns False if not or if it does not exist.

IsExpressVerified(124000123456789)<CRLF>

True<CRLF>

GetAllExpressVerifiedInfo

This request takes one RFID and returns the Express Verification status 
of the animal followed by the date this information was registered with 
the CCIA database.

GetAllExpressVerifiedInfo(124000123456789)<CRLF>

True,20070312<CRLF>

Group_DoesExist

This request takes one or more RFIDs. For each RFID in the request, a 
True or False will be returned based on whether the animal exists.

Group_DoesExist(124000123456789,124000456756113)<CRLF>

True,False<CRLF>

Group_IsAgeVerfied

This request takes one or more RFIDs. For each RFID in the request, 
a True or False will be returned based on whether the animal has a birth 
date or not.

Group_IsAgeVerified(124000123456789,124000456756113)<CRLF>

True,False<CRLF>

Group_GetBirthDate

This request takes one or more RFIDs. For each RFID in the request, 
the birth date of the animal will be returned.

Group_GetBirthDate(124000123456789,124000456756113)<CRLF>

20070312,00000000<CRLF>

Group_GetAge

This request takes one or more RFIDs. For each RFID in the request, 
the age, in months, will be returned.

Group_GetAge(124000123456789,124000456756113)<CRLF>

27,0<CRLF>

Group_GetBreed

This request takes one or more RFIDs. For each RFID in the request, 
the breed will be returned.

Group_GetBreed(124000123456789,124000456756113)<CRLF>

An,<CRLF>

Group_IsExpressVerified

This request takes one or more RFIDs. For each RFID in the request, 
a True or False will be returned based on whether the animal is Express 
Verified or not.

Group_IsExpressVerified(124000123456789,124000456756113)<CRLF>

True,False<CRLF>

GetLastNightlyCheckStatus

Each night Symmetry downloads any new data from the CCIA database. 
This request can be issued remotely to see if the last download happened 
correctly or not. If Symmetry has not be able to download new data for 
multiple nights in a row, once the issue is fixed it will download all miss-
ing data from previous nights as well. So if this function returns “OK” 
then you know all the information is up to date. If an error is returned 
you know that something needs to be fixed.

GetLastNightlyCheckStatus()<CRLF>

OK<CRLF>

or

GetLastNightlyCheckStatus()<CRLF>

Error: some human readable error message<CRLF>

GetLicenseStatus

This request can be used to determine the license status of Symmetry. It 
will return OK unless Symmetry is not properly licensed.

GetLicenseStatus()<CRLF>

OK<CRLF>

or

GetLicenseStatus()<CRLF>

Error: some error message<CRLF>

Extra Information for the TCP API
The TCP API is capable of handling hundreds of requests per second on 
the same connection. However, in most cases, it will only be handling a 
request every few to several seconds.

There is logic built in to Symmetry so that whenever there are less that 
three to five requests per second, Symmetry will use very little CPU (usu-
ally less than one percent). One the request rate increases, Symmetry will 
begin using more CPU time very quickly to keep up. It has been tested 
at over 450 requests/second at about 60% CPU. Of course, this will vary 
depending on hardware and network.



Symmetry API Reference 1.0 Page 4

More Information
If you need more help in figuring out how to communicate with Symme-
try’s APIs, please contact Cannon Smith via email (cannon@ssgfusion.
com) or, if urgent, via phone (403-626-3236).


